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Abstract

A numerical algorithm to simulate chemotactic and/or diffusive migration on a one-dimensional growing domain
is developed. The domain growth can be spatially nonuniform and the growth-derived advection term must be
discretised. The hyperbolic terms in the conservation equations associated with chemotactic migration and domain
growth are accurately discretised using an explicit central scheme. Generality of the algorithm is maintained using
an operator split technique to simulate diffusive migration implicitly. The resulting algorithm is applicable for any
combination of diffusive and/or chemotactic migration on a growing domain with a general growth-induced velocity
field. The accuracy of the algorithm is demonstrated by testing the results against some simple analytical solutions
and in an inter-code comparison. The new algorithm demonstrates that the form of nonuniform growth plays a
critical role in determining whether a population of migratory cells is able to overcome the domain growth and fully
colonise the domain.
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1. Introduction

Cell migration occurs over many scales and is initiated for a wide variety of reasons [30]. For example,
single cell organisms can respond to external stresses by moving through their environment for survival.
Multi-cellular organisms rely on cell migration as a mechanism for development, repair and immune
responses. Several mechanisms for cell migration have been postulated. Diffusion, whereby cells undergo
a random walk, is the classical conceptual model for cell migration [12,23]. Cells can also move in
response to a gradient of an external signal. For example, the external signal may be a signalling chemical
(typically a diffusible molecule), an adhesive extra-cellular matrix molecule or a magnetic field. These
mechanisms are called chemotaxis, haptotaxis and magnetotaxis, respectively. A population of bacteria
can move through its environment via chemotaxis [1,16] or magnetotaxis [5], optimising nutrient uptake.
Chemotaxis of single cells and cell populations is well studied [34,45]. Angiogenisis [2] and tumor cell
invasion are mediated by haptotaxis and chemotaxis [3,33,44].

Biological development processes are often associated with physical expansion and growth as in em-
bryogenesis of reptiles, birds, mammals and fish where development occurs in the presence of an extra-
embryonic nutrient source. Under certain circumstances, biological growth and migration occur simul-
taneously and at comparable rates such that each can influence the other. General problems combining
biological growth and migration encompass a broad range of processes including both cellular migration
and the migration of biochemical signalling species. For example, the development of biological pat-
terns are thought to arise through the migration of an activator–inhibitor biochemical signalling system
within expanding tissues [6,7]. Localised apical growth [10,26,32] and nonlocalised domain expansion
[8,18,21,28,38] have been considered as specific types of domain growth relevant to particular biological
systems.

Mathematical models of biological pattern development have been predominantly concerned with
diffusive migration on uniformly expanding domains undergoing slow growth [7,35]. Typically the nu-
merical approach to solving these systems uses a moving grid [38] or a transformed grid [7] upon which
the governing equations are discretised.

Simulating migration on a transformed domain undergoing spatially uniform expansion is a particular
case of a more general problem. For uniform growth, the hyperbolic terms associated with domain growth
and the transformation to the fixed coordinate system are equal and opposite. Therefore, these terms cancel
and are not discretised. For the more general problem of migration on a non-uniformly growing domain
all terms must be accurately discretised.

In addition to biological applications, there is a broader research interest in migration processes on
growing domains. In polymer science the dynamics of material swelling associated with solute migration
has several theoretical and industrial applications [13]. Similarly in health sciences, solute migration
within swelling tissues is of interest to understand biochemical responses to injury [40]. Therefore, an
ability to mathematically model migration on growing domains is of broad interest.

This work presents a numerical algorithm for simulating diffusive and/or chemotactic migration on a
growing domain where the domain growth can be spatially non-uniform. Although the particular applica-
tion that motivated the development of this algorithm involves cell migration by chemotaxis, the algorithm
is also applicable to haptotactic migration as chemotaxis and haptotaxis are mathematically equivalent
[27]. The algorithm was devised to extend the analysis of the cell migration and colonisation problem
posed in [21], which investigated the conditions under which a population of chemotactically motile cells
could colonise a growing domain. This previous study was limited to uniform growth. Furthermore, the
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numerical scheme used to solve the chemotaxis-dominated problem required an ad hoc addition of linear
diffusion to avoid numerical errors [21]. These limitations are completely overcome with the numerical
scheme presented here. For this work, the conservation equations are solved with an operator split (OS)
strategy [22,42,43], where the central scheme proposed by Kurganov and Tadmor (KT) [19] is used to
simulate the hyperbolic and kinetic terms, while the diffusive migration is solved with an implicit finite
element (FE) algorithm. The numerical algorithm is applied to a new biologically motivated nonuniform
domain growth model. The growth model concerns the rostral-to-caudal migration of neural crest cells
in the developing gut during vertebrate embryogenesis. The results illustrate the complex interactions
between chemotactic migration and nonuniform growth dynamics.

2. Algorithm development

A system of conservation equations for chemotactic and diffusive migration on a growing domain will
be proposed. In developing the numerical algorithm, we emphasise the particular difficulties associated
with the terms in the conservation equations and also highlight how the algorithm extends previous
attempts at solving related problems. The accuracy and generality of the algorithm is demonstrated via a
suite of test cases including a new application relevant to the formation of the vertebrate enteric nervous
system.

2.1. Conservation equations for migration on a growing domain

To simulate chemotactic and diffusive migration on a growing domain, conservation of mass equations
for the migratory population n and the chemoattractant g can be derived [21]:
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where kn and kg are general kinetic functions representing processes that might include mitotic production,
differentiation, chemoattractant production and decay, and cell–chemoattractant binding. The velocity v

represents the domain growth and will be specified later. The numerical algorithm is not sensitive to the
particular form of the kinetic functions. The remainder of this study focusses upon two specific forms of
interest [22]:

kn(n, g) = �1n
(

1 − n

N

)
, (3)

kg(n, g) = �2 − �3g − �4ng. (4)

The choice of kinetic functions represents logistic growth for the proliferation of n, zeroth order production
of g, first order decay of g and a nonlinear cell–chemoattractant binding term. These particular kinetics
are relevant for the migration of neural crest cells along the growing gut during vertebrate embryogenisis
[22]. Neural crest cells respond chemotactically to growth factors, such as Glial-derived neurotrophic
factor (GDNF), which is produced within the developing gut [29,46]. Spatial gradients of GDNF are
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thought to arise primarily through GDNF binding to receptors on the neural crest cells thereby enabling
a localised population of neural crest cells to generate a chemotactic gradient and migration velocity.
GDNF also acts as a survival factor for the neural crest cells; consequently cells can only survive where
GDNF is present [15,29,46]. Our interest in this system is to predict whether a population of motile cells
can colonise a non-uniformly growing domain, such as the developing gut. This problem has relevance
to a common birth defect in humans called Hirschsprung’s disease, where the migrating neural crest cells
fail to completely colonise the growing gut [21,46].

Introducing the dimensionless variables:

n∗ = n

N
, x∗ = x

L0
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L0�1
, g∗ = �3g

�2
, t∗ = �1t , (5)

where L0 is the initial length of the domain, we can identify the dimensionless constants:

D∗
n = Dn

�1L
2
0

, D∗
g = Dg

�1L
2
0

, �∗ = ��2

�1�3L
2
0

, � = �3

�1
, � = N�4

�1
. (6)

Using (5)–(6) without the asterisk notation, the governing equations become
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The objective of this study is to develop an efficient and accurate numerical algorithm to solve (7)–(8). The
algorithm must be applicable to either diffusive migration (�=0), chemotactic migration (Dn=0), diffusive
or nondiffusive chemoattractant conditions (Dg �0), or any combination of diffusion and chemotaxis. In
addition, any form of the domain growth velocity v should be permitted.

2.2. Domain growth: relating growth velocity and domain expansion

The domain of interest is 0 < x < L(t), where L(t) is the increasing length of the domain. A velocity
field causes a point at location x to move to x + v(x, t)�t , over the small time period �t . Considering the
expansion of an element �x, the expression linking the expansion of the total length L to the velocity is

dL

dt
= L̇ =

∫ L(t)

0

�v

�x
dx. (9)

The key step in defining the growth is specifying the local expansion rate �v/�x. Most previous analyses
invoke spatially uniform growth, which means that �v/�x is independent of position (but not necessarily
independent of time) [6,7,21,35]. Here we show that this uniform growth assumption turns out to be the
simplest case of a more general problem. We will demonstrate the interesting and important influence of
nonuniform growth on migration by considering two examples of this type.
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2.3. Transformation to a fixed grid

The conservation equations for n and g are valid on 0 < x < L(t). The spatial variable is transformed
as � = x/L [7,21,35], thereby fixing the domain as 0 < � < 1. This leads to the transformed conservation
system:
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System (10)–(11) is closed by specifying initial and boundary conditions for n and g and the velocity
distribution v(�, t). Note that the transformed system (10)–(11) contains additional hyperbolic terms.
The significance of these terms will be discussed, especially when comparing the numerical algorithm
developed here with previous attempts at solving similar problems.

2.4. Operator split scheme

The OS scheme is now introduced. In each time step the temporal integration is done in two stages
[22,42,43]. Firstly, the hyperbolic and kinetic terms are solved using the KT central scheme:
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For the second stage, the remaining diffusion terms are solved using a standard linear mass-lumped FE
(or equivalently, a standard linear finite difference) approximation:
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Within each time step the diffusion terms (14)–(15) are solved using the results from the solution of the
first stage (12)–(13) as the initial conditions. With these two steps completed, the whole system (10)–(11)
has been advanced through the time step, and the entire procedure is repeated until the desired output
time is reached. Further details of this splitting scheme are addressed in [42].

2.4.1. Kurganov–Tadmor central scheme
The KT central scheme has enjoyed recent popularity solving hyperbolic problems such as open channel

flow [14], particle settling [4], cell migration [22] and reactive chemical transport in aquifer systems [42].
Because the algorithm is explained in detail elsewhere [14,19,42], only the framework specific to the
implementation of KT for the current problem is outlined.
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To apply the KT scheme, the conservation system must be in the form
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��
= Z(W), (16)

where W is the vector of conserved variables, F is the flux and Z is the vector of kinetic terms. Introducing
h(�, t) = �g/�� and rearranging the domain growth terms in (12)–(13), the components of (16) are
identified:
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Note that v, � and �v/�� are included in formulation (16) even though these terms are not associated
with a conservation equation. Maintaining these terms in conservation form enables the KT algorithm
to properly account for spatial gradients of these quantities. This is similar to recent work in [4], which
provides further discussion on this topic.

The KT algorithm is applied to (16) by computing derivatives using a MINMOD limiter, with �= 1.99
[42], on a uniformly discretised domain. To perform the temporal integration, the KT algorithm permits
a semi-discrete form

dW
dt

= �(W) + Z(W), (18)

where � represents the spatial discretisation procedure. An explicit 3rd order TVD Runge–Kutta
method [39] is used to integrate (18). The stability of this method is subject to the Courant condition,
Cr = maxi | �i | �t/�� < 1, where �i are the eigenvalues of the Jacobian of F [39]. Therefore, �t must
be sufficiently small to satisfy this constraint.

2.4.2. Galerkin finite element solution of the diffusion equation
Once the hyperbolic system (12)–(13) is solved, these results are used as initial conditions to solve

the remaining diffusion system (14)–(15). The diffusion equations are solved with a mass-lumped linear
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Galerkin FE method applied to the same spatial grid. We note that the mass-lumped linear Galerkin FE
approximation at a central node is identical to a standard linear finite difference approximation. Temporal
integration is performed with the unconditionally stable backward Euler method [9]. The details of the
numerical procedure are standard and described elsewhere [37]. In cases where Dg > 0, the new solution
for g(�, t) is then used to update the h(�, t) = �g/�� profile. For cases where Dg = 0, this update is
unnecessary.

The algorithm description is now complete and will be referred to as the Kurganov–Tadmor operator
split (KT-OS) algorithm. Before using the algorithm it is prudent to test the accuracy of the scheme.
First, the fundamental KT-OS algorithm is tested on a problem with an analytical solution. Second, the
KT-OS algorithm is used to solve a combined diffusion and chemotaxis problem on a non-uniformly
growing domain and the results are checked with a standard FE algorithm. The inter-code comparison is
restricted as the FE algorithm is constrained by the Peclet number [47]. In Section 3, an uncoupled test
case is conducted under nonuniform growth conditions that permits part of the conservation system to be
solved analytically. This suite of test problems provides confidence in the accuracy of the KT-OS scheme.
In addition, the benchmarking procedure allows us to glean some insight into the complex interactions
involved in simulating chemotactic and diffusive migration on a nonuniformly growing domain.

2.5. Operator splitting: testing with a Gaussian hill problem

To demonstrate the accuracy of the KT-OS algorithm, a linear advection diffusion equation (ADE) on
a nongrowing domain is considered:

�c

�t
= D

�2c

�x2 − u
�c

�x
. (19)

The application of the KT-OS to (19) is straightforward. Firstly, given initial conditions, the hyperbolic
part is advanced over �t using the KT algorithm. The propagation speed is the imposed velocity, � = u.
Secondly, the diffusive term is advanced over �t using the FE algorithm with the results from the KT
algorithm as the initial conditions. Further analysis of the OS scheme is given in [42].

Although the ADE is simpler than the cell migration model, the accuracy of the numerical solution
depends upon the accuracy of the KT algorithm combined with the OS step. The ADE is ideal for testing
the numerical scheme as analytical solutions exist. Here we solve (19) on −∞ < x < ∞ with

c(x, 0) = exp

{
−

(
x − x0

l

)2
}

. (20)

Eq. (19) with the initial condition (20) is known as a Gaussian hill problem [11,42]. The analytical
solution is

c(x, t) = 1
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}

,

�(t) =
√
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Numerical solutions are generated on a truncated domain 0 < x < 2, with c(0, t)=c(2, t)=0. To illustrate
the flexibility of the splitting approach, we use a wide range of diffusion coefficients. With the Peclet
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Fig. 1. Comparison of KT-OS (solid line), FE (dotted line) and analytical (•) solutions for the Gaussian hill problem at t = 1. A
range of Peclet number conditions are shown, (a) Pe = ∞, (b) Pe = 10, (c) Pe = 1 and (d) Pe = 0.1. Here u = 1, x0 = 1

4 and

l = 1
20 . Numerical computations are performed with �x = �t = 2 × 10−3.

number defined as Pe = u�x/D, we investigate the range of conditions 0.1�Pe�∞. Numerical and
analytical solutions are compared in Fig. 1.

The numerical results for the Gaussian hill problem indicate that the KT-OS algorithm is able to replicate
the analytical solution over a wide range of conditions. The algorithm performs well where there is pure
advection and Pe = ∞ (Fig. 1a). This is expected as no splitting is required. More importantly, the
numerical profiles are also accurate when splitting is invoked (Fig. 1b–d). In addition, an implicit mass-
lumped FE (centered finite difference) algorithm was also used and the results are shown in Fig. 1. For
high Peclet numbers the FE solution performs poorly; the profiles are excessively dissipative and the peak
concentration is severely underestimated. As well as the results shown here, further tests were conducted
incorporating linear decay into the ADE. These additional simulations were performed under identical
conditions as for the conservative Gaussian hill problem. The numerical results accurately reproduced
the analytical profiles, thereby illustrating the generality of the proposed solution scheme [42].

Splitting the diffusion term and solving it implicitly are necessary to simulate the wide range of results
given in Fig. 1 using a fixed discretisation and a single algorithm. For example, if the diffusion terms were
discretised explicitly in the KT algorithm then the OS step could be avoided. However this approach is
limited by the stability criteria for explicit solutions of the diffusion equation: numerical instabilities would
appear as the diffusion coefficient increased [9]. Alternatively, standard finite difference or finite element
methods could be applied directly to (19); however these methods are limited by the well-known Peclet
number restriction (P e = u�x/D�2) [47] and perform poorly under advection dominated conditions
(Fig. 1). Neither of these alternative options for solving the ADE permit the range of Peclet numbers
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shown in Fig. 1 with a fixed discretisation. Therefore, incorporating the OS step into the KT algorithm
enables an accurate and flexible methodology for solving combined advection–diffusion problems.

Historically, it has been common for numerical simulations of advection–diffusion type migration in
mathematical biology to be conducted with standard Eulerian (finite difference or finite element) numerical
algorithms. Therefore, these algorithms are subject to the Peclet number restrictions and associated
errors shown in Fig. 1 for the important case of advection (chemotaxis/haptotaxis) dominant migration.
These standard Eulerian approaches have been used for simulating migration on nongrowing domains
[2,20,28] as well as migration on growing domains [6–8,21,36]. These limitations were recognized
by Marchant et al. [24], who developed a Kurganov–Tadmor [19] central scheme for the solution of
haptotaxis dominant migration on a nongrowing domain. This previous work was limited to nongrowing
domains with small diffusivities [24]. These limitations are overcome in the present work by developing
an algorithm applicable to either nongrowing, uniformly growing, or nonuniformly growing domains
with migration being either purely diffusive, purely chemotactic (haptotactic) or any combination of
chemotaxis (haptotaxis) and diffusion.

2.6. Migration on a uniformly growing domain: remarks on previous approaches

A uniformly growing domain is one where the local expansion rate does not depend on position in the
domain. However, the local expansion rate can still be a function of time. For simplicity, in this case we
write

�v

�x
= �(t). (22)

Substitution into Eq. (9) gives

�v

�x
= �(t) = 1

L

dL

dt
. (23)

Eq. (23) can be interpreted in two ways. If the domain growth is known to be uniform and if the form of
�(t) can be estimated, then L(t) can be determined from the differential equation (23). In reality, however,
it is more likely that the domain growth is assumed to be uniform, L can be experimentally measured at
different times, and then the exact nature of �(t) can be deduced from (23).

Only for the special case �(t) = 	, a constant for all time, (so that �v/�x is independent of both x and
t), does Eq. (23) imply that L(t) grows exponentially in time, as L(t) = e	t . Alternative forms of L(t),
including linear and logistic functions [6,21] are possible under uniform growth conditions, provided that
�(t) varies in a specific way with time.

Without any loss of generality, we assume that the domain is elongating in the positive x direction,
with the origin fixed so that v(0, t) = 0. By integrating (23), the velocity field associated with uniform
growth is [6,7,21]:

v = x

L

dL

dt
. (24)

Transforming this velocity field into the � coordinate and substituting into the conservation equations
(10)–(11), yields the governing equations relevant for uniform growth on a transformed domain. For this
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case, the hyperbolic terms associated with the transformation and domain growth cancel:
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The combination of uniform growth and the transformation gives a kinetic term that represents uniform
dilution. The kinetic term can be easily incorporated into a numerical scheme without any severe limitation
imposed by numerical accuracy considerations. We remark that the application of the KT-OS scheme to
(25)–(26) is simpler than for the general system (10)–(11) as only three variables need to be conserved
in the KT algorithm rather than six.

The simplifications associated with uniform growth mean that standard Eulerian numerical techniques
are better suited under these conditions as there are less hyperbolic terms to be discretised. The presence
of hyperbolic terms is of particular concern because of the Peclet number restrictions associated with
traditional schemes. In the case of purely diffusive migration and uniform growth, (25) with � = 0, a
standard numerical discretisation would be convenient as there are no hyperbolic terms and therefore no
Peclet number restriction. For chemotactic migration on a uniformly growing domain, some diffusion
must be included before standard numerical algorithms are applied [21]. This is a serious limitation
of Eulerian algorithms, particularly for the important and relevant case where chemotaxis dominates
diffusion. For migration of neural crest cells in the developing gut of vertebrate embryos, the growth
is nonuniform [31] and the migration is predominantly chemotactic [46]; therefore, the applicability of
traditional algorithms is severely limited. This observation has motivated the development of the KT-OS
algorithm for such problems.

The numerical simplifications offered by invoking uniform domain growth (25)–(26) are obtained
regardless of the form of L(t). In order to proceed a choice of L(t) must be made. As noted, linear,
exponential and logistic models for L(t) have been considered previously [6,21]. Laboratory observations
indicate that gut growth in vertebrate embryos is approximately exponential [31]; therefore L(t) = e	t is
used for presenting results in the next subsection.

2.7. Chemotactic and diffusive cell migration: inter-code comparison with a finite element algorithm

To demonstrate the accuracy of the full chemotactic and diffusive migration algorithm, a uniform
growth and a nonuniform growth case are presented. Unfortunately, under these conditions there is no
possibility of testing the numerical results against an analytical solution as carried out for the Gaussian
hill problem. Therefore, an inter-code comparison is the best option for model testing in these cases [41].

For nonuniform growth an example is chosen to be numerically insightful. We focus on the case where
the spatial dependence of �v/�x is linear in x:

�v

�x
= 
(t)x. (27)

Substitution into Eq. (9) gives an expression for 
(t) in terms of L and hence we obtain

�v

�x
= 2x

L2

dL

dt
. (28)
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Integrating (28) with zero velocity at the origin gives a quadratic velocity field:

v =
( x

L

)2 dL

dt
. (29)

Simulating growth with (29) does not permit cancellation of any terms in the transformed conservation
equations (10)–(11). Therefore, this test case is suitable to detect the ability of a numerical algorithm to
handle non-uniform growth conditions.

To complete the model description, the temporal growth L(t) must be specified. We choose L(t)= e	t .
Consequently, we will compare two different velocity fields, one uniform (24), the other nonuniform (29),
both having the same net exponential elongation. We next consider solving the full system (10)–(11) for
these two cases.

To conduct the inter-code comparison, the Galerkin FE algorithm used to solve the full system (10)–(11)
incorporates linear elements and mass lumping for the temporal and kinetic terms [22,37]. The FE
algorithm was developed using standard techniques [37] and so the details are not presented. A backward
Euler scheme is used for the temporal integration, and Picard iteration is used to solve the nonlinear
equations. Picard iterations are conducted until maxi | cm+1

i −cm
i | < 1×10−4, where c is the concentration

of n or g, m is the iteration level and i is the nodal index. The key limitation of the FE algorithm is
Pe=���/D�2, where � is the maximum propagation speed associated with the hyperbolic terms and ��
is the grid spacing. The presence of nonlinear terms in the conservation system complicates the expression
for the Peclet number. Therefore, we rely on the generation of grid-independent results to indicate that
numerical error conditions are satisfied.

Initial conditions on 0 < x < 1 are chosen to reflect an initial penetration of cells, at capacity density, into
the growing end of the domain. The initial chemoattractant concentration represents uniformly saturated
conditions, namely:

g(x, 0) = 1, n(x, 0) = H(x − (1 − �)), (30)

where H is the Heaviside step-function and � is the length of the domain initially colonised. The boundaries
are closed to diffusive fluxes. The KT-OS and FE algorithms are used to generate the cell density and
chemoattractant concentration profiles shown in Fig. 2.

The key result from the benchmarking exercise is that the profiles given by the FE and KT-OS algorithms
are indistinguishable. The FE algorithm gave identical results with �� and �t halved, indicating that the
results are accurate and grid-independent. Now that the KT-OS algorithm is shown to properly account
for chemotactic and diffusive migration on a non-uniformly growing domain, the algorithm can be used
with confidence in other situations such as purely chemotactic migration with nonuniform growth.

Comparing profiles in Fig. 2a and 2b highlight some important differences between uniform and
nonuniform growth. The most striking difference is that the advancing cell front in the quadratic growth
case is more successful at colonising the domain. This is easily explained by considering the differences in
the magnitude of the domain velocity for the two growth models. At any point in the domain, the domain
velocity associated with the quadratic growth model is always a factor of x/L smaller than uniform growth
so that net cell migration is more effective on the quadratically growing domain. The dilution associated
with the domain growth, given by the terms 1

L

�v
��n and 1

L
�v
��g in (10)–(11), is also quite different. The

difference in dilution is most clearly demonstrated in the chemoattractant profiles in Fig. 2. In the region
to the left of the advancing cell profile the dilution is spatially uniform for uniform growth (Fig. 2a),
while the profiles for nonuniform growth reveal a spatially variable dilution effect (Fig. 2b).
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Fig. 3. Schematic of the nonuniform travelling wave-of-growth. The domain elongates according to L(t) while the travelling
wave m(t) traverses from the growing end across the domain to the fixed end delineating the nongrowing region (shaded) from
the growing region (unshaded). The case where m(0) = L(0) = 1 is shown here.

3. Applying the KT-OS algorithm to the development of the enteric nervous system

During embryogenesis, the entire tissue substrate may not always commence growing at the same time.
This kind of growth is relevant to the migration of neural crest cells along the gut in the development of
the enteric nervous system. Neural crest cells enter the oral end of the gut and migrate towards the anal
end simultaneously as the gut grows. The oral end of the gut grows, primarily by elongation, before the
anal end, thereby giving rise to nonuniform domain growth [21,31]. Here we propose a mathematical
model of nonuniform growth relevant to the developing gut.

Fig. 3 is a conceptual model for embryonic gut growth motivated by the measurements in [31]. At
any time, the domain can be divided into two sections: (1) the growing (oral) end which is elongating,
and (2) the fixed (anal) end which is not growing [31]. It is assumed that a wave-of-growth, delineating
growing and nongrowing sections of tissue, travels with some velocity across the domain. The front of
the wave-of-growth is at x = m(t) and moves in the negative direction until it reaches the origin, after
which time the whole domain is growing. We assume that the growing part m(t) < x < L(t) elongates
with �v/�x = 	, a constant independent of both position and time. This means that the domain growth in
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this growing region is the simplest type of uniform growth. The constant 	 is the rate of expansion of the
underlying tissues through proliferation.

This type of nonuniform growth can be mathematically described by

�v

�x
= 	H(x − m(t)) for 0 < x < L(t), (31)

where m(t) is a decreasing function. Hence H(x − m(t)) represents a step-function travelling wave
moving to the left. The rate of elongation of the domain is

dL

dt
=

∫ L(t)

0

�v

�x
dx =

{0 when m(t) > 0 and 0 < x < m(t),

	(L(t) − m(t)) when m(t) > 0 and m(t) < x < L(t),

	L(t) when m(t) = 0.

(32)

To interpret (32) we assume that m(t) and 	 are measurable. Therefore, the domain elongation L(t) is
uniquely determined by (32). The frame of reference for the problem is prescribed so that x = 0 remains
fixed. For these conditions the velocity field is

v(x, t) =
{0 when m(t) > 0 and 0 < x < m(t),

	(x − m) when m(t) > 0 and m(t) < x < L(t),

	x when m(t) = 0.

(33)

This nonuniform growth model is applicable for 0�m(0)�1; in this work the particular case m(0) = 1
is examined. For simplicity, we assume the velocity of the wave-of-growth to be linear:

m(t) = (1 − bt)H(1 − bt). (34)

Eqs. (33) and (34) specify the domain growth as a function of the speed of the travelling wave b and the
growth rate 	. The domain length is

L(t) =

⎧⎪⎨
⎪⎩

b

	
e	t + (

1 − b
	

) − bt, 0 < t <
1

b
,[

b

	
e

	
b − b

	

]
e	(t− 1

b
), t >

1

b
.

(35)

Thus L behaves exponentially for later times, consistent with experimental measurements [31].
The nonuniform growth model (31)–(35) shall now be incorporated into the KT-OS algorithm to

investigate migration in conjunction with the nonuniform domain growth.

3.1. Effect of nonuniform travelling wave-of-growth on the chemoattractant distribution

To examine the influence of nonuniform growth on the dynamics of n and g, it is insightful to first
simulate an uncoupled problem where the dynamics of g are independent of n. The uncoupling is achieved
by setting �=0 and we further simplify the system by assuming diffusive migration is negligible, Dg =0.
Under these conditions the conservation equation for g is:

�g

�t
= − �

�x
(vg) + �(1 − g), (36)

on the domain 0 < x < L(t). Here, the domain velocity v is nonuniform and given by (33)–(34).
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growth upon g. Results are presented for (a) high production conditions � = 1.0, and (b) low production conditions � = 0.1. The
nonuniform growth parameters are 	 = 0.4 and b = 0.2; numerical solutions are for �� = 1 × 10−3 and �t = 5 × 10−3. Profiles
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The method of characteristics (MOC) is used to solve (36) and demonstrate the interactions be-
tween nonuniform dilution and chemoattractant production. This exercise provides a final test for the
KT-OS algorithm. A characteristic is a curve that satisfies dx/dt = v(x, t). Along a characteristic g is
governed by

dg

dt
= �(1 − g) − g

�v

�x
. (37)

As the growth is nonuniform the dilution term g�v/�x depends on position. To solve (37), we con-
sider a characteristic starting at x(0) = x0 on 0 < x0 < 1, with g(x0, 0) = G0. Along a characteristic the
concentration of g is

g(t) =

⎧⎪⎨
⎪⎩

(G0 − 1)e−�t + 1, 0 < t < t0 = 1 − x0

b
,[

(G0 − 1)e−�t0 + 	

� + 	

]
e(�+	)(t0−t) + �

� + 	
, t > t0.

(38)

Numerical and analytical results with G0 = 1 are computed for high and low production rates to
demonstrate the interplay between the production kinetics and dilution. Fig. 4 illustrates that the numerical
and analytical profiles of g are identical. The initially saturated part of the domain retreats as the wave-of-
growth sweeps across the domain. The steady value of g is �/(�+	). For high production, this equilibrium
value is attained rapidly after the wave-of-growth passes.Alternatively, for low production the equilibrium
concentration is much smaller and the profiles do not reach a steady state for the times considered. This
uncoupled analysis gives some insight into the interactions between the domain growth dynamics and
the chemoattractant production rate for a coupled migration problem (� > 0).

3.2. Chemotactic migration upon a nonuniformly growing domain with a wave-of-growth

To investigate the influence of the travelling wave-of-growth on the migration characteristics of a
cell population, it is necessary to solve (10)–(11) in conjunction with the nonuniform growth condition
(33)–(34). This kind of problem is easily handled by the KT-OS scheme for any combination of diffusion
or chemotactic migration.
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Fig. 5. Numerical results showing (a) the profile of n and (b) the progression of the n = 0.1 contour (�) with the length of the
domain L(t) and the position of the transition to growth m(t). Nonuniform growth parameters are b = 0.2, 	 = 0.1. Migration
parameters are � = 1 × 10−2, Dn = Dg = 0 and � = � = 1. Initial penetration of cells is � = 0.5. Numerical computations are
performed with �� = 1 × 10−3 and �t = 5 × 10−3.

To demonstrate a range of behaviours, results from three simulations are presented. All simulations
are performed with � = 1 × 10−2 and Dn = Dg = 0 as we are primarily interested in the case where
chemotaxis is the dominant migration mechanism [46]. The initial conditions are a uniformly saturated
chemoattractant concentration and a localised cell concentration, namely Eq. (30). Zero flux boundary
conditions are prescribed. Results are computed until t = 10 and the n profiles are shown in Fig. 5.

Fig. 5a shows the progression of the migratory population of cells. The elongation of the domain and
associated dilution of the cell concentration in the growing region are clear. At early times the advancing
front develops a discontinuity. This is expected as discontinuous solutions for chemotactic migration
are known to occur when the initial distribution of cells has compact support on a nongrowing domain
[20,22,25]. The migration continues towards the origin until t = 10 when the domain is practically
colonised. The interaction of the nonuniform growth, the elongation of the domain, and the advancement
of the cell front are summarised in Fig. 5b. For early times, the n= 0.1 contour advances rapidly towards
the origin. At later times, once the wave-of-growth passes the cell front, the advancement is slowed. The
slowed front continues to migrate towards the origin and the entire domain becomes populated just after
t = 11. We also remark that the n profile shows a local maximum when t = 2; this observation will be
explained after the next example.

A second example is shown in Fig. 6 where the same problem is solved but for a much stronger growth
rate, 	 = 0.3. Fig. 6a shows the progression of the cell population. During the time interval 0 < t < 10 the
domain elongates to over ten times the original length; to maintain clarity, the profiles are truncated to show
only 0 < x < 5. For early times the cells migrate toward the origin until the wave-of-growth overtakes the
advancing cells. Once this occurs the migration slows, halts, and is then swept in the opposite direction
due to the magnitude of the domain growth. After the front moves in the positive x direction the domain
will never be colonised. This interplay between the advancing cell front, the travelling wave-of-growth
and the domain elongation is summarised in Fig. 6b.

For both cases presented so far, there is a spatially localised maximum in the n profile at t = 2. This
phenomena is caused by the combination of chemotactic migration and the nonuniform dilution of g.
As the wave-of-growth travels across the domain, the chemoattractant profile dilutes in a non-uniform
manner (Fig. 4). Ahead of the wave there is no chemotactic flux. Conversely, just behind the wave, a
growth-induced chemotactic gradient exists due to dilution. Therefore, in this region, there is a local
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Fig. 7. Numerical results showing (a) the profile of n and (b) the progression of the n = 0.1 contour (�) with the length of the
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chemotactic flux of n into the negative x direction. This combination of a growth-induced dilution of g
and chemotactic migration of n gives rise to a localised region where there is a net chemotactic flux of n
into that region. According to mass-conservation principles, n must increase in this region. The formation
of the local maximum dissipates in time as the travelling wave-of-growth is continuously moving toward
the origin.

A final example is shown in Fig. 7. where essentially the same problem as in Fig. 5 is solved. The
key difference is that the speed of the travelling wave-of-growth is sufficiently exaggerated that the
nonuniform growth converts almost instantaneously into uniform growth. Although the shape of the cell
profile behind the front changes appreciably, the cell front is practically unable to move against the domain
growth. This is because the wave-of-growth almost instantaneously traverses the domain thereby making
progress of the migration very difficult. At early times the position of the n = 0.1 contour makes a small
advancement towards the origin. At later times the contour is slowly swept in the positive x direction
precluding colonisation.
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These three simulations show that in order to realistically model cell migration on a nonuniformly
growing domain, the spatial and temporal nature of the non-uniform growth must be accurately identified
as the form of the growth can dictate colonisation success or failure. This observation further generalises
the analysis of [21]. This previous work observed that the colonisation of a uniformly growing domain,
where migration is primarily chemotactic, is controlled by �/	 and �. These parameters, together with
those governing the nonuniform growth, will also be relevant to colonisation problems on nonuniformly
growing domains.

In general, the nonuniform travelling wave-of-growth model is applicable for all situations where
0 < m(0) < 1 and b > 0. Care should be exercised in the special case where b = 0 and � > 0. In this
case, the domain is divided into a growing and nongrowing region, and m(0) remains fixed. The dilution
due to domain growth will be discontinuous causing the distribution of chemoattractant to contain a
discontinuity. Therefore, the chemotactic gradient and flux become infinite at m(0). This can be remedied
by ensuring that �v/�x is continuous. A simple way of doing this is to introduce a narrow region where
�v/�x is a linear ramp across m(0).

4. Discussion and conclusions

The numerical algorithm developed here provides a significant advance upon previous attempts to
simulate migration on growing domains. Prior studies have been largely restricted to uniform growth
[6,8,21,36]. Simulating uniform growth on a transformed domain yields an important numerical simpli-
fication. For uniform growth the hyperbolic terms associated with domain growth and the transformation
cancel; thereby leaving growth represented as a straightforward kinetic term [21]. Therefore, in the case
of diffusive migration on a uniformly growing domain the conservation equation is purely diffusive in
the transformed coordinate and easily solved using standard numerical techniques.

The inclusion of chemotaxis is important for two reasons. Firstly, for some cell migration problems,
chemotaxis is the dominant migration mechanism [21,46]. Secondly, the inclusion of chemotaxis means
that the numerical algorithm must be capable of resolving the nonlinear hyperbolic term associated with
chemotactic migration. Conducting numerical simulations of chemotactic migration on a nonuniformly
growing domain is challenging because of the predominance of hyperbolic terms in the conservation
equations.

Previous attempts at solving chemotaxis (haptotaxis) dominated problems, either on a growing or a
nongrowing domain, have generally involved the use of standard Eulerian numerical algorithms where
linear diffusion is included, in part, to preclude numerical errors [2,20,21,28,36]. Diffusion is typically
included by using a centered difference for the advection term and explicitly adding a linear diffusion
term [20,21], or alternatively diffusion is introduced numerically by using an upstream difference for the
advection term [47]. Adding linear diffusion to a standard numerical algorithm to overcome numerical
errors is problematic for two reasons. Firstly, recent numerical work investigating the interaction between
diffusive and chemotactic migration on a nongrowing domain showed that a very small amount of diffusion
can completely mask the presence of chemotaxis [22]. Therefore by adding diffusion to a chemotaxis
simulation in order to overcome numerical errors, it is likely that the chemotactic characteristics of the
system are completely, albeit inadvertently, concealed. Secondly, adding diffusion in an ad hoc manner
is imprudent because cell diffusivities are infrequently known or measured a priori. For example, several
diffusive migration models including pattern formation [17] and cell invasion [23] have been related to
realistic biological observations without any specific knowledge of the diffusivity.
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Using a central scheme to solve a chemotaxis problem on a nonuniformly growing domain is a useful
approach for overcoming the standard problems associated with the numerical solution of hyperbolic
conservation systems. In particular, the KT central scheme is known to perform well for nonlinear hy-
perbolic problems [19,22]. Previous attempts at using the KT algorithm for problems including diffusion
suggested that the diffusion term be discretised explicitly [19,24]. This approach is only applicable when
the diffusion coefficient is small. The objective of the present work was to develop an algorithm for
simulating cell migration for any combination of diffusion and chemotaxis. This flexibility is achieved
with an OS step. This approach is ideal for interpreting laboratory observations of migration where the
relative contributions of diffusion and chemotaxis are initially unknown.
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